Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Viktor Vrábel, ${ }^{\text {a }}{ }^{\text {* }}$ Jozef Kožísiek ${ }^{\text {b }}$ and Štefan Marchalín ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic, ${ }^{\text {b }}$ Department of Physical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic, and ${ }^{\text {c }}$ Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic

Correspondence e-mail: vrabel@cvt.stuba.sk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.125$
Data-to-parameter ratio $=21.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethyl 2-methyl-6-(2-thiazolidinyl)-4-(2-thienyl)-1,4-dihydropyridine-3,5dicarboxylate

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, the substituted 1,4dihydropyridine ring has a flat-boat conformation. The two ethoxycarbonyl groups are twisted in the same direction and the plane of the 2-thiophene ring is almost perpendicular to the 1,4 -dihydropyridine ring.

Comment

1,4-Dihydropyridine (DHP) derivatives constitute a major class of calcium antagonists and have been a target of struc-ture-activity relationship studies. Several crystallographic studies have correlated the pharmacological effects with the degree of puckering of DHP rings. Triggle and co-workers (Triggle et al., 1980; Fossheim et al., 1982; Janis \& Triggle, 1983; Langs \& Triggle, 1985) have identified some important structural requirements for biological activity which include: (a) the structural integrity of the DHP ring, (b) no substitution on the N atom at position 1,(c) the 2,6-positions to have alkyl substituents and the 3,5 -positions to have ester substituents, (d) an aryl substituent at the 4 position of the DHP ring. We have studied the crystal structure of the title compound, (I), and present its structure here.

The molecular structure of (I) is shown in Fig. 1. The shortest intermolecular contact of $3.206(3) \AA$ is for $\mathrm{N} 12 \cdots \mathrm{O} 13(-x,-y+2,-z)$. The 1,4-DHP ring has a flat-boat conformation, with atoms N1 and C4 displaced by 0.180 (2) and 0.415 (3) \AA, respectively, from the base of the boat. The 2-thiophene ring is nearly planar and is approximately perpendicular to the 1,4-DHP ring [dihedral angle $79.5(1)^{\circ}$]. The 2-thiazolidine ring is twisted from the mean plane of the central 1,4-DHP mean plane by $56.4(1)^{\circ}$. Both ester groups have cis,cis geometry with respect to the ring double bonds and are rotated slightly out of the 1,4-DHP plane, with a C6$\mathrm{C} 5-\mathrm{C} 22-\mathrm{O} 24$ torsion angle of 177.3 (2) ${ }^{\circ}$ and a $\mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 12-\mathrm{O} 14$ torsion angle of $-171.5(2)^{\circ}$.

Experimental

The title compound, (I), was prepared by a condensation reaction of the starting diethyl 2 -formyl-6-methyl-(2-thienyl)-1,4-dihydro-

Received 17 February 2003 Accepted 20 February 2003 Online 28 February 2003
pyridine-3,5-dicarboxylate (Marchalín et al., 2001) with 2-aminoethanethiol. Yellow prismatic crystals of (I) were prepared by recrystallization from an ethanol solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \\
& M_{r}=408.52 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.9441(18) \AA \\
& b=11.222(2) \AA \\
& c=11.489(2) \AA \\
& \alpha=69.21(3)^{\circ} \\
& \beta=71.47(3)^{\circ} \\
& \gamma=83.99(3)^{\circ} \\
& V=1022.0(4) \AA^{3} \\
& Z=2 \\
& D_{x}=1.327 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$$
D_{m}=1.33(1) \mathrm{Mg} \mathrm{~m}^{-3}
$$

D_{m} measured by flotation in
bromoform-hexane
Mo $K \alpha$ radiation
Cell parameters from 6596
reflections
$\theta=12.4-28.6^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur CCD
diffractometer
ω and φ scans
Absorption correction: none
6596 measured reflections 5344 independent reflections

Figure 1
The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

All H atoms were positioned geometrically and were treated as riding atoms $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$, with $U_{\text {iso }}$ values set at $1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl) of the parent atom.

Data collection: CrysAlisCCD (Oxford Diffraction Limited, 2002); cell refinement: CrysAlisRED (Oxford Diffraction Limited, 2002); data reduction: CrysAlisRED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

This work was supported by the Grant Agency of the Slovak Republic (grant Nos. 1/9249/02 and 1/9255/02).

References

Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Fossheim, R., Svarteng, K., Mostagd, A., Romming, C., Shefter, E. \& Triggle, D. J. (1982). J. Med. Chem. 25, 126-131.

Janis, R. A. \& Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.
Langs, D. A. \& Triggle, D. J. (1985). Mol. Pharmacol. 27, 544-548.
Marchalín, S., Chudík, M., Cvopová, K., Pham-Huu, P., Kožíšek, J., Svoboda, I. \& Daich, A. (2001). Tetrahedron Lett. 42, 5663-5667.
Oxford Diffraction Limited (2002). CrysAlisCCD and CrysAlisRED. Oxford Diffraction Ltd, Köln, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Triggle, A. M., Shefter, E. \& Triggle, D. J. (1980). J. Med. Chem. 23, 1442-1445.

